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SUMMARY 

We consider steady state and time-dependent flows of chemically reactive polymeric systems in two-dimensional 
geometries. A numerical simulation tool is proposed for predicting the evolution of the macroscopic velocity, 
temperature, stress and species concentration fields in such flows. We formulate a general mathematical model on 
the basis of the first principles of continuum mechanics, which includes a description of the non-linear coupling 
between kinematics, heat transfer and chemical kinetics. The resulting set of non-linear partial differential 
equations is solved numerically by means of appropriate finite element techniques. We have implemented the 
resulting numerical model in the general-purpose POLYFLOW‘” software developed in Louvain-la-Neuve, 
Belgium. Simulation results for various steady state and time-dependent reactive flows are reported. 

KEY WORDS Chemically reactive flows Finite element analysis Polymeric fluids 

1. INTRODUCTION 

Computer modelling techniques applied to polymer processing are being developed at a fast pace.’ In 
particular, simulation methods that account for the complex rheological behaviour of polymer systems 
have been significantly improved over the last decade.233 to the extent that robust commercial software 
is now used in industrial  development^.^ In the present paper we wish to extend these modelling 
capabilities by considering chemically reactive polymeric flows. 

Three main issues must be dealt with in order to describe chemically reactive flows of polymeric 
systems. First, one needs a proper mathematical description of the relevant chemical kinetics. Second, 
the effect on the fluid rheological behaviour of structure build-up due to the reactive processes must be 
characterized. Third, appropriate numerical algorithms are required for the solution of the set of non- 
linear partial differential equations describing the system. These issues arise in most processes of 
industrial relevance. A prime example is that of processing of polyurethane foams.5 Indeed, processing 
flows of urethane foaming systems involve a material whose molecular and supramolecular structures 
are rapidly evolving as the chemical reactions proceed. Here, the gas phase contributing to foaming is 
produced together with the continuous polymeric phase. Foaming and polymerization processes are 
both highly exothermic. Moreover, important density variations are obtained in a matter of minutes, 
which has a major impact on the flow kinematics6 Finally, the rheological behaviour of the foaming 
system changes dramatically as the chemical reactions proceed. 

* Author to whom correspondence should be addressed. 

CCC 027 1-2091/95/0403 19-1 6 
0 1995 by John Wiley & Sons, Ltd. 

Received 4 January I994 
Revised 23 July I994 



320 L. LEFEBVRE AND R. KEUNINGS 

A complete micromechanical description of the above physicochemical processes that could be used 
for general flow simulations is not feasible with current computing resources. As a first step we have 
thus opted to consider the chemically reactive polymeric system under investigation as a 
macroscopically single-phase material. We wish, however, to predict the evolution of the different 
chemical species contributing to the macroscopic behaviour of the system. In order to do so, we 
propose a general set of governing equations derived from the first principles of continuum mechanics. 
To those general equations we add a number of phenomenological relations for the chemical kinetics 
and the evolving fluid rheology. 

The numerical solution of the resulting set of governing equations for flow processes of industrial 
relevance requires the development of a sophisticated non-linear finite element methodology. The main 
issues here are the mixed mathematical nature of the governing equations, the strong non-linear 
coupling between kinematics, heat and mass transfer, and the possible presence of free surfaces. These 
difficulties are addressed in this work by means of a panoply of numerical schemes based on modem 
finite element techniques. We have implemented the resulting numerical model in the commercial 
computer code POLYFLOW ’ that allows for the prediction of multidimensional flows in complex 
geometries4 

The paper is organized as follows. In Section 2 we propose a macroscopic mathematical formulation 
of chemically reactive polymeric flows. When deemed necessary, the case of polyurethane foams is 
used for illustrative purposes. The numerical technique is briefly described in Section 3. Since the main 
ingredients of our numerical approach have been published elsewhere by various authors (in the 
context of Navier-Stokes and chemically neutral polymer flows), we only focus on the basic features 
and refer to the literature for details. Simulation results are reported in Section 4. Three flow problems 
are considered, involving fluid systems with six different chemical species: (i) the time-dependent 
confined flow in a divergent die, (ii) a steady state flow in a heated die (inverse problem) and (iii) the 
transient, free surface, ‘free-rise’ flow in a cylindrical reactor. 

2. MATHEMATICAL MODEL 

Let us consider a chemically reactive polymeric system involving Nc simultaneous chemical reactions. 
We shall assume a total of Nr different reactants and N p  different products. Our goal is to predict the 
evolution of the chemical reactions, namely the evolving volume fractions of the N r  + Np species, 
together with that of the macroscopic velocity, stress and temperature fields. In particular, we are 
interested in describing the complex non-linear coupling between kinematics, heat transfer, rheology 
and chemical reactions. 

In order to build a computationally tractable mathematical model, we consider the chemically 
reactive system as a compressible, purely viscous, homogeneous fluid. By compressibility we mean 
here that the overall fluid density is a function of temperature but not of pressure. This applies, for 
example, to the case of polyurethane foam processing. We shall neglect mass transfer by diffusion, and 
all species physical properties are assumed constant. The primary unknowns of the model are the 
macroscopic velocity, pressure, temperature and species volume fraction fields. In addition, free 
surface parameters are also part of the unknowns when the process involves free surfaces. 

Our basic mathematical model then consists of (i) kinetics laws and rheological constitutive 
equations (both being specific to each particular reactive system under investigation), (ii) conservation 
equations for linear momentum, mass and energy, (iii) a kinematic equation describing the motion of 
free surfaces (if any) and (iv) suitable initial and boundary conditions specified for the unknown fields. 
Material data are needed for describing the chemical kinetics as well as the rheological and thermal 
behaviour of the system. Let us consider in sequence the various components of the model. 
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We define, for each of the Nr + Np species involved, the volume fraction ui, the rate of formation or 
disappearance ri, the heat capacity ci, the thermal conductivity ki, and the density pi. In order to predict 
the evolution of the volume fraction fields, we shall need suitable kinetics equations that describe the 
relevant chemical reactions. As an example, let us consider the case of polyurethane foam processing. 
Here the material evolves from a low-molecular-weight, dilute emulsion to a structured fluid in which 
gas bubbles are separated by thin polymeric liquid films. The gas phase is generated within the liquid 
phase as a by-product of the polymerization reaction. Production of the blowing agent and curing of 
the polymer occurs simultaneously; both processes are highly ex other mi^.^ The two primary chemical 
reactions occurring in polyurethane foam processing involve three main reactants: a hydroxyl-group- 
ended resin R‘-(OH)fl (l), polyisocyanate R-(NCO), (2) and water (4). Described here for 
monofunctional reactants (i.e. f l  = f 2  = I ) ,  these reactions are the so-called gelling reaction 

R’ -OH + RNCO + R’ - o - oc - NH - R, 
(1 )  1 2 3 

which leads to the formation of polyurethane (3), and the blowing reaction 

2R - NCO + H20 + C02 + R - NH - CO - NH - R, 
(2) 2 4 5 6 

which produces the blowing agent, i.e. carbon dioxide (5) and polyurea (6).  In our notation, we have 
here Nc = 2, Nr = 3 and Np = 3. We have shown6 that second-order kinetics apply for both the gelling 
and blowing reactions. This means, for example, that the rate of production of urethane (i = 3) is given 
by 

r3 = KA exp(-E~/RT)ala2 , (3) 

where the subscripts 1 and 2 refer to isocyanate and resin respectively, R is the gas constant and Tis the 
absolute temperature. The kinetics model (3) involves two material parameters, namely the pre- 
exponential factor KA and the activation energy E A .  Similarly, the rate of production of carbon dioxide 
(i = 5) is described by 

r5 = KB exp( - E B / R T ) u ~ u ~  , (4) 

where the subscript 4 refers to water. The two chemical reactions of our example will generate heat in 
the respective amounts H A  and Hs. The kinetic expressions (3) and (4) and the heats of reaction H A  

and HB will serve as source terms in the conservation equations for mass and energy respectively. In 
the present work all species densitiespi are constant, expect that of C 0 2  which follows the perfect gas 
law. 

The accurate mathematical description of the rheology of reactive polymeric systems remains for the 
most part an open issue. In view of the lack of detailed theories, we suppose that we have at our 
disposal a phenomenological, viscous constitutive equation of the form 

T = 2p,(uj 1 i ) ~  I ( 5 )  

which relates the extra-stress tensor T to the rate-of-strain tensor D through the shear viscosity p~ the 
latter is a hnction of the degree of advancement of the chemical reactions, of the shear rate i and of 
temperature. We have proposed such a model in the context of polyurethane foam pro~essing.~.’ A 
general constitutive law of the form (5) has been implemented in the code. We point out, however, that 
in the flow processes reported in the present paper, the rheology of the system has been found to play a 
very minor role relative to that of the chemically induced density variations. 
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We can now state the governing equations using the basic principles of continuum mechanics. The 
momentum, energy and global mass conservation equations read respectively 

pf(;+v. v v )  = 

+f -+ v (PfV) = 0. 
at 

In these equations, v stands for the velocity vector, p is the pressure, pf is the fluid density, kf  is the heat 
conductivity, Cf is the heat capacity and H i s  the total heat generated by the Nc reactions. The density is 
given by 

i =  I 

We approximate the heat capacity and conductivity by the relations 

N r t N o  N r i N o  

i =  I I =  I 

In addition to (6-8), we write a mass conservation for the ith species ( i  = 1, 2, ..., Nr + Np - 1 )  as 

where Y ,  is the rate of formation or disappearance of the ith species, given e.g. by (3). Finally, the 
following algebraic constraint applies: 

z = 1  

Equations (6-8), (1 1) and (12) are used to compute steady state or time-dependent reactive flows in 
confined geometries. The simulation of many flows of industrial interest involves the prediction of free 
surfaces whose location is a priori unknown. A similar issue arises in the study of co-flow of 
immiscible fluids (e.g. in co-extrusion processes). In this latter case the interfaces separating 
immiscible adjacent fluid layers must also be determined as part of the solution to the governing 
equations. An additional kinematic equation is needed to compute the evolution of free surfaces. It 
reads 

a 
at 

v . n = - - ( x o ,  t ) - n ,  

where n is the unit vector normal to the free surface, itself described by the vector equation 
x = x (xo, t ) ,  and v is the velocity field evaluated at the free surface. 

Finally, the mathematical formulation is closed with suitable boundary and initial conditions 
specified for the unknown fields. 
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3. NUMERICAL TECHNIQUE 

The governing equations ( 6 x 8 )  and (1 1 x 1 3 )  form a set of coupled, non-linear partial differential 
equations. The base numerical issues that arise are the mixed mathematical type of the governing 
equations, the convection-dominated nature of the energy and species conservation laws, the strong 
non-linear coupling between the various unknown fields and, possibly, the presence of free surfaces. 
These issues have been addressed separately by several authors over the last decade in the context of 
Newtonian and chemically neutral polymeric flows. In the present work our approach has been to 
combine the best available algorithms in order to define a robust and computationally tractable solution 
strategy for the governing equations at hand. Below we briefly outline the main ingredients of the 
numerical technique. Further details can be found in the listed references. 

We solve the set of equations (6)-(8) and (1 l H 1 3 )  approximately by means of a mixed finite 
element discretization of the primary unknown fields. After extensive numerical experimentation7 we 
found it appropriate to use Galerkin's principle to discretize the momentum, volume fraction constraint 
and global mass conservation equations. On the other hand, we have implemented the consistent 
streamline upwind Petrov-Galerkin method (SUPG) developed by Brooks and Hughes' for solving the 
convection-dominated energy and species conservation equations. SUPG has been used with success 
in other hyperbolic problems, e.g. for the discretization of differential viscoelastic constitutive 
equations.' 

Free surfaces are computed together with the other unknown fields by means of the technique of 
'spines' advanced by Kistler and Scriven" for Newtonian flows and further developed in the context of 
polymer flows by several authors."-I3 Here Galerkin's principle is adopted for the discretization of the 
kinematic condition (1 3). 

The selection of approximation subspaces is not a trivial issue, since no rigorous mathematical 
analysis is available for the governing equations ( 6 x 8 )  and ( 1  1H13).  Numerical experiments7 with 
various mixed finite element interpolations for the unknown fields have guided us to the following 
selection: P1-Co shape functions for pressure, temperature and species volume fractions; P2-Co shape 
functions for velocity and free surface parameters. Clearly this leads to a large number of nodal 
unknowns even for two-dimensional problems. 

In the case of steady state flows we obtain a set of non-linear algegraic equations for the nodal values 
of the unknown fields. We solve this set of equations by means of a full Newton scheme for the case of 
confined flows. A decoupled techniqueIl3'* is used to solve free surface flows, whereby the 
conservation equations are solved on a given domain by means of Newton's method at each iteration 
on the free surface. Finally, an automatic continuation procedure4 on material properties and boundary 
conditions is used to guide the non-linear iterations. 

In the case of time-dependent flows the discretized finite element equations form a set of first-order, 
non-linear, coupled differential equations. We discretize those equations in time by means of a first- 
order predictor-corrector scheme proposed by Gresho et al. l 4  for the Navier-Stokes equations. The 
time step is automatically evaluated by the algorithm in order to keep the local time discretization 
errors within user-defined bounds. Here again a decoupled scheme is used in the case of free surface 

4. SIMULATION RESULTS 

We consider three flow problems: (I) the time-dependent confined flow in a divergent die, (11) a steady 
state flow in a heated die (inverse problem) and (111) the transient, free surface, 'free rise' flow in a 
cylindrical reactor. The first two flows are planar, while the third is axisymmetric. In all cases there are 
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two simultaneous chemical reactions involving six different species: 

reaction A:  
reaction B: 

reactant 1 + reactant 2 + product 3, 
reactant 2 + reactant 4 + product 5 + product 6. (14) 

We have here Nc = 2, Nr = 3 and Np = 3. Second-order kinetics are assumed to hold for the two 
reactions, as in (3) and (4). The particular material and geometrical data selected for the simulations are 
listed elsewhere.’ Note that in all reported results we assume that the viscosity of the fluid is constant. 
Simulations with non-linear viscosities, as in (5 ) ,  have shown that the rheology plays a negligible role 
in the three problems under investigation in comparison with the chemically induced density 
 variation^.^ The computations were run on CRAY Y-MP and CONVEX C240 vector computers (one 
processor). Typical CPU times are of the order of 1 h. 

4.1  Flow in a divergent die 

The flow geometry consists of a smooth, two-dimensional divergent die whose walls are thermally 
insulated (Figure 1). The fluid is a water-blown polyurethane foam. It enters the flow domain at room 
tempeature with a uniform longitudinal velocity. We specify that the chemical reactions ( I )  and ( 2 )  
start at the inlet section with prescribed reactant volume fractions. The fluid is assumed to slip at the 
divergent walls.* Finally, fklly developed conditions are specified at the outlet section. In the present 
simulation the blowing agent (COz) density was artificially increased by a factor of 10 in order that 
most of the blowing reaction occur in the diverging zone of the flow domain. 

Figure 2 shows the two finite element meshes used for the simulations. The coarse mesh involves 
2306 unknown nodal variables, while the refined mesh contains 4618 variables. Since there is no 
reference solution available in the literature, a mesh refinement analysis is necessary to assess the 
numerical accuracy of our results. We shall see that the coarse mesh already provides accurate results. 

Two cases were considered: (i) the simulation of steady state reacting flow with the inlet reactant 
volume fractions specified as in Figure 1, and (ii) the time-dependent response of the reacting flow 
following a progressive change of those inlet conditions. 

The steady state simulation has been described in detail e l~ewhere .~  We found that the computed 
flow trajectories, which are everywhere tangent to the velocity vector field, very much resemble those 
obtained when the chemical reactions are turned off, namely when the fluid density is forced to remain 
constant. The magnitude of the velocity vectors, however, is dramatically altered by the chemical 
processes. This can be observed in Figure 3, where we compare contour lines of the longitudinal 
velocity component obtained with a constant density model (which for a foam essentially is an 
inertialess, Stokes flow solution) and the chemically reacting system. 

For the constant density fluid the velocity decreases continuously in view of the gradual increase in 
the flow geometry cross-section. The reactive fluid behaves very differently. The velocity increases in 
the divergent section up to a value about four times larger than the inlet velocity. This is due to the 
rapid decrease in fluid density related to the production of carbon dioxide (see Figure 8). Since the 
mass flow rate is conserved, the fluid must accelerate. 

The above results reveal the important non-linear coupling between the conservation equations. 
They also point to a primary numerical difficulty, namely the selection of appropriate initial guesses for 
starting the iterative procedure. In the present work we use the Stokes solution to start the iterations. 
Since the Stokes solution is structurally very different from the final result, a carefkl continuation 
procedure is needed to obtain convergence of the iterative ~ c h e m e . ~  

* We have actually implemented a Nuvier slip law, of which the slip condition used here is one limit case. Simulation results 
using the Navier condition are reported elsewhere.’ 
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INSULATED SLIP WALL 

PLANE OF SYMMETRY 
Figure I .  Computational domain. At the inlet section, we specify a uniform flow profile, a temperature of 294 K, and species 

volume fractions (64% resin, 32% isocyanate, 4% water). Fully developed flow is specified at the outlet section. 

2306 VARIABLES 

46 18 VARIABLES 

Figure 2. Finite element discretizations: coarse and refined meshes. 

STOKES FLOW 

Figure 3. Normalized longitudinal velocity contours. Stokes flow: without chemical reactions; Foam flow: with chemical 
reactions. 
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Figure 4. Time-dependent inlet conditions in terms of reactant volume fractions. 

We now consider a time-dependent perturbation of the inlet boundary conditions, depicted in Figure 
4. In a matter of 6s the inlet volume fractions of isocyanate and water are increased, while that of the 
resin is decreased. The initial conditions are given by the steady state solution described above. During 
the first 2s the inlet conditions are kept constant; this allows us to initiate the time integration 
procedure with two large time steps. After 6s the inlet conditions have reached a new steady state 
regime. We wish to compute the time-dependent response of the reacting flow following the change in 
reactant volume fractions; this change may or may not lead eventually to a new steady state regime. 

In order to examine the computed results, we consider various predicted fields along the specific 
flow line shown in Figure 5. This flow line is a particle trajectory computed for the initial steady state 
flow. It is not, of course, a particle trajectory for the transient phase (nor is it one for the final steady 
state, if any). 

Figure 6 shows the temporal evolution of the volume fraction of urethane along the curve of Figure 
5. As mentioned above, the time step is computed automatically by the algorithm; its minimum value is 
0.05s. The full curves have been obtained with the refined mesh, while the data points correspond to 
the coarse discretization (Figure 2). Agreement between the two finite element discretizations is rather 
good. 

We find that steep gradients in species volume fractions develop during the transient phase, until a 
new steady state regime is reached after about 30s. 

Similarly, we plot in Figure 7 the evolution of temperature along the selected curve. The exothermic 
character of the two chemical reactions leads to a significant spatial rise of the steady state temperature 
fields. The transient phase is quite complex; the temperature field decreases over part of the flow 
domain at early times. 

I I 

Figure 5. Flow trajectory of the initial steady-state solution selected for display of computed fields. 
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Figure 6 .  Computed 
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urethane volume fraction along the curve defined in Figure 5. Coarse 
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Figure 7. Computed temperature along the curve defined in Figure 5. Coarse mesh (dots) and refined mesh (continuous lines) 
results. at selected values of time. 
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Figure 8. Computed density along the curve defined in Figure 5. Coarse mesh (dots) and refined mesh (continuous lines) results, 
at selected values of time. 
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Figure 9. Computed magnitude of the velocity field along the curve defined in Figure 5. Coarse mesh (dots) and refined mesh 
(continuous lines) results, at selected values of time. 

Figure 8 shows the predicted foam density. In the present problem, the difference between the initial 
and final steady state values is not large. The significant spatial decrease in density has, however, a 
strong impact on the flow kinematics. This can be seen in Figure 9, where we show the magnitude of 
the velocity vector along the selected curve. Although the final steady state velocity is not dramatically 
different from the initial regime, the transient phase shows a significant overshoot which has been 
confirmed by mesh refinement. It is clear that these complex phenomena can only be predicted by 
means of a non-linear simulation tool. 

4.2. Steady state f low in a heated die (inverse problem) 

The physical process under consideration is shown in Figure 10. The computational domain is 
divided into three parts: a heater, a solid die and the chemically reactive fluid. The fluid enters on the 
left with a specified temperature and a flat velocity profile. Is is assumed to slip at the die wall, and 
fdly developed conditions are imposed at the exit section. We formulate the following inverse 
problem: how much heat must be generated by the heater in order to achieve a temperature of 300 K at 
some specified location within the flow domain? The Lagrange multiplier technique recently 
developed by Legat and Marchal" is used here to solve the inverse problem, in conjunction with the 
numerical method of Section 3. 

18907 VARIABLES 

Figure 10. Exploded view of the computational domain and refined finite element discretization. Domain 1: heater; Domain 2: 
die; Domain 3: fluid. The temperature must reach a specified value at point X. 
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Figure 1 1. (top) Temperature contours (K); (middle) Fluid density contous (kgh3); (bottom) Flow trajectory selected for display 
in subsequent figures. 
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Figure 13. Evolution of species volume fractions along trajectory shown in Figure 1 1  (bottom). 
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300 302 r------ 

Figure 14. Evolution of temperature (K) along trajectory shown in figure 11 (bottom). 

The flow involves the two chemical reactions shown in (14). One assumes that reaction A is 
exothermic and reaction B is endothermic. Vanishing values for the volume fractions of products are 
specified at the entry section, while non-stoichiometric values are imposed for the reactants. 
Conditions of perfect thermal insulation are imposed at the outer boundary of the ‘heater’ and ‘die’ 
computational domains. We solve the heat conduction equations in those two subdomains (with an a 
priori unknown, uniform heat source in the heater), together with the governing equations of Section 2 
in the fluid phase. Continuity of temperature and heat flux is obtained automatically in the finite 
element sense at the interface between the subdomains. 

We have used two finite element meshes to discretize the computational domain. The refined mesh 
is shown in Figure 10; it involves a total of 18,907 unknown nodal values. The coarse mesh has 4867 
nodal values. There is good agreement between the results obtained with these two meshes. 

Figure 11 shows the computed temperature and fluid density contours. In this example the chemical 
reactions lead to a decrease in the overall density. A particular fluid trajectory is selected to display 
various results (Figure 11, bottom). The magnitude of the velocity vector along that trajectory is shown 
in Figure 12, together with the results obtained under the same conditions but without chemical 
reactions. As in Section 4.1, there is a marked difference between the two cases, which is due to the 
coupling between kinematics and chemically induced density variations. 

Volume fractions predicted along the selected trajectory are shown in Figure 13. In view of the non- 
stoichiometric data specified at the inlet section, reactant 1 is not totally consumed when the reactions 
are completed. 

Finally, we show in Figure 14 the computed temperature along the selected trajectory. One observes 
four main regimes: first, a rapid decrease due to the dominating endothermic character of reaction B; 
this is followed by an increase in temperature caused by heat conduction from the heater; sufficiently 
far away from the heater the endothermic character of reaction B prevails again; finally, when the 
chemical reactions are completed, the temperature reaches a constant value. 

4.3. Simulation of the free rise foaming experiment 

The free rise foaming process is often used to study the kinetics of particular polyurethane foam 
formulations. A schematic diagram of the process is shown in Figure 15. The reactants are premixed 
rapidly and introduced at the bottom of a thermally insulated, cylindrical reactor. Foaming is then 
allowed to occur freely. Production of carbon dioxide leads to a continuous decrease in density and 
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Figure 15. Schematic of free rise foaming and time-dependent computational mesh. 

thus to an increase in the foam height. The reactor temperature rises owing to the exothermic nature of 
the chemical reactions. 

We have reported previously the results of an experimental investigation of the free rise foaming 
process.6 Our goal was to obtain temperature and foam height evolution profiles in order to 
characterize and quantify the chemical kinetics. We also developed6 a one-dimensional mathematical 
model that allows for the prediction of temperature, foam height and species volume fractions as a 
function of time. This simplified model assumes that the process is perfectly adiabatic and that the flow 
is driven by density changes only. The foam flow front is thus perfectly flat in this model and 
dynamical forces are neglected altogether. The one-dimensional model was used to obtain the kinetic 
parameters on the basis of the available temperature and foam height experimental data. 

In the present paper we wish to simulate the free rise foaming process by means of the two- 
dimensional finite element technique of Section 3, without the approximations inherent to the one- 
dimensional model. The flow problem is two-dimensional axisymmetric, time-dependent and involves 
a free surface (i.e. the foam flow front). Figure 15 shows a schematic diagram of the time-dependent 
computational domain and finite element discretization. The boundary of the computational domain 
consists of four parts. Conditions of perfect thermal insulation are imposed along the whole boundary. 
The foam velocity vanishes at the bottom of the reactor (side A). Side D is an axis of symmetry. Free 
surface boundary conditions are specified along side C. Values of the contact angle are imposed at the 
free surface end-points ‘e’ and ‘f’. Finally, the foam is assumed to slip (either perfectly or partially) 
along the vertical reactor wall (side B). The moving finite element mesh has a total of 573 unknown 
nodal values. The simulation required a total of about 8000 non-linear iterations. 

0.16 - **9-: 

0.14 

- Experiments 
--- ID Model 

0.08 o 2DModel 
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0.04 

0 4 ,  
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Figure 16. (a) Foam height as a function of time. Experimental observations6 and numerical predictions obtained with the one- 
dimensional model6 and the two-dimensional finite element technique (perfect slip at vertical wall); (b) computed foam density 

as a function of time. 
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As far as initial conditions are concerned, we specify homogeneous values for the reactant volume 
fractions as well as room temperature over the initially flat computational domain. We should point out, 
in relation to the experimental process, that the simulation only starts once the so-called cream time has 
been reached, namely after 12s for the particular chemical formulation considered in our work. As the 
simulation proceeds, the foam flow front moves vertically owing to production of the blowing agent; 
this is accompanied by a continuous deformation of the finite element mesh. 

Two cases were studied: (i) perfect slip conditions at the vertical reactor wall (the free surface thus 
remains flat) and (ii) partial slip described by a Navier condition. 

When perfect slip occurs at the vertical wall, the mathematical problem is exactly described by the 
one-dimensional model.6 This provides a non-trivial test problem for our two-dimensional finite 
element procedure. We compare in Figure 16(a) the predicted time-dependent foam height obtained by 
means of the one-dimensional model and the two-dimensional finite element method. Agreement is 
excellent. Also shown in Figure 16(a) are the experimental observations.6 The predictions are in good 
agreement with the experimental data, until the blowing agent is observed to escape from the top of the 
foam after 1 min or so. This event can obviously not be predicted with the present mathematical 
model. 

The predicted foam density is shown in Figure 16(b). The significant decrease in density is due to 
the production of carbon dioxide; it is of course directly related to the foam height increase depicted in 
Figure 16(a). 

Results obtained with partial slip at the vertical wall are discussed next. Figure 17 shows successive 
foam flow fronts as well as the initial and final (steady state) finite element meshes. In the present case 
the free surface is no longer flat in view of the viscous forces acting near the wall. Except in a small 
zone near the moving contact point ‘e’ (see Figure 15), we find that the computed temperature and 
volume fraction fields remain essentially homogeneous in space. 

The evolution of temperature is shown in Figure 18(a). We observe that the steady state is not yet 
reached after 200s, even though the final foam height is attained after 120s. This is due to the vastly 
different kinetics of the blowing and gelling reactions, as inspection of Figure 18(b) hrther reveals. 
Here we show the predicted water and polyurethane volume fractions as a hnction of time. While most 
of the water has disappeared after 120s owing to the blowing reaction, the gelling reaction continues to 
produce polyurethane after 200s. 

INITIALMESH FOAM FRONT FINAL MESH 

Figure 17. Evolution o f  foam flow front as a function of time; initial and final steady-state finite element meshes (partial slip at 
vertical wall). 
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Figure 18. Computed foam temperature (a) and volume fractions of water and polyurethane (b) as a function of time. 

5 .  CONCLUSIONS 

We have described a macroscopic approach to the mathematical modelling of chemically reactive 
polymeric fluids. A variety of specialized finite-element-based algorithms developed for chemically 
neutral processing flows has been exploited to solve the resulting non-linear governing equations. 
Simulations have been carried out for various flow problems. The results reveal the dramatic influence 
on flow kinematics of the chemically induced density variations. Implementation of the proposed 
numerical model in a general-purpose software provides a new simulation tool that can be used 
fruitfully for the design of chemically reactive flow processes in the polymer industry. 

This work is obviously a first step. From the computational viewpoint, extension to three- 
dimensional flow processes is not feasible on classical, sequential computers, and exploitation of 
parallel finite element algorithms is required. The work of our team in that direction is reviewed 
elsewhere.I6 As far as modelling is concerned, a major challenge is the development of a ‘micro- 
macro’ mathematical formulation that, on one hand, would relate the evolving microstructure of the 
chemically reactive polymeric systems to their macroscopic behaviour and, on the other hand, would 
remain computationally tractable for general flow simulations. 
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